Адаптация мышечной системы

Адаптация мышечной системы

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6

Нервно-мышечная адаптация к силовой подготовке

В предыдущих главах мы обсуждали функции мышечной и нервной систем при физической нагрузке. Но как объяснить различия между фи­зически слабым человеком, весящим около 90 фунтов, и тяжелоатлетом, выступающим на Олимпийских играх? Что помогает 9-летнему мальчику поднять машину, массой 2 т? Почему спортсмены видов спорта, для которых не нужна большая сила, занимаются силовыми трениров­ками? Действительно ли достичь чего-то можно только через боль?

Не каждый может стать Арнольдом Шварце­неггером, но практически каждый может уве­личить свою силу. В этой главе мы рассмотрим, как происходит увеличение силы при силовой тренировке, обратим внимание на изменения, происходящие в самих мышцах и в нервных ме­ханизмах, которые их контролируют. Мы изу­чим явление болезненного ощущения в мыш­цах и то, как предотвратить его возникновение. Наконец, мы обсудим основные принципы орга­низации программы силовой подготовки и важ­ность их соответствия потребностям каждого человека.

Длительные нагрузки вызывают множество адаптации в нервно-мышечной системе. Степень адаптации зависит от тренировочной программы. Аэробные тренировки, например, бег трусцой или плавание, если и вызывают, то лишь незначитель­ное увеличение силы и мощности. Большинство нервно-мышечных адаптации происходит в ре­зультате силовой тренировки.

Одно время бытовало мнение, что силовая тре­нировка необходима только тяжелоатлетам, спорт­сменам силовых легкоатлетических дисциплин, а также (в ограниченном виде) — футболистам, бор­цам и боксерам. Однако в конце 60-х — начале 70-х годов тренеры и ученые установили, что си­ловая тренировка приносит пользу спортсменам, занимающимся различными видами спорта.

В настоящее время силовая тренировка — важ­ный компонент тренировочных программ боль­шинства спортсменов. Это относится и к спорт­сменкам, которых традиционно не допускали к

этому виду нагрузок. Такое изменение отноше­ния к силовой тренировке во многом обусловле­но исследованиями, показавшими ее благопри­ятное влияние, а также новшествами в трениро­вочной технике и спортивном оснащении.

Силовая тренировка рекомендуется даже для неспортсменов, которые занимаются спортом для укрепления здоровья.

Прежде чем приступить к рассмотрению не­рвно-мышечных изменений, развивающихся в ре­зультате силовой тренировки, определим измеря­емые компоненты мышечной подготовленности.

Максимальное усилие, которое может произ­вести мышца или группа мышц, называется си­лой. Человек, способный отжать, лежа на ска­мье, массу 300 фунтов имеет в два раза большую силу, чем тот, кто может отжать 150 фунтов. В данном примере сила, или максимальная спо­собность, определяется в виде максимальной мас­сы, которую человек может поднять один раз. Это так называемый максимум одного повторе­ния или 1-ПМ.

Мощность— взрывной компонент силы, ре­зультат силы и скорости движения:

мощность = (сила х расстояние)/время. Рассмотрим пример. Два человека могут от-

Мощность является функциональным при­ложением силы и скорости. Это ключе­вой компонент большинства видов спортивной деятельности

Рис. 4.1. Мощность спортсмена А вдвое больше мощности спортсмена Б, поскольку он выполняет жим 250 фунтов, лежа на скамье, в два раза быстрее

жать, лежа на скамье, массу 250 фунтов на оди­наковое расстояние. Тот, который выполняет это в два раза быстрее, имеет в два раза большую мощ­ность. Этот принцип показан на рис. 4.1.

Хотя абсолютная сила — важный компонент физической деятельности, все же мощность, по-видимому, играет еще большую роль в большин­стве видов спорта. Например, в футболе напада­ющий, имеющий 1-ПМ 450 фунтов, вряд ли смо­жет переиграть (превзойти) защитника, имеющего 1-ПМ всего 350 фунтов, если последний спосо­бен перемещать 1-ПМ с более высокой скорос­тью. Нападающий на 100 фунтов сильнее, однако более высокая скорость защитника в сочетании с достаточной силой обеспечивают ему преимуще­ство.

В данной главе мы в основном рассмотрим аспекты мышечной силы, уделив лишь неболь­шое внимание мышечной мощности. Вспомним, что мощность включает два компонента — силу и скорость. Скорость — в большей степени врож­денное качество, незначительно изменяющееся в

результате тренировок. Поэтому увеличение мощ­ности почти исключительно зависит от развития силы.

Хотя данная глава посвящена в основном раз­витию максимальной силы и мощности, успех во многих видах спортивной деятельности зави­сит от способности мышц повторно производить и поддерживать почти максимальные или мак­симальные усилия. Такая способность выполнять повторяющиеся мышечные действия, например, поднятия туловища из положения лежа без по­мощи рук и ног либо выжимания в упоре, или статические мышечные действия на протяжении относительно длительного периода времени, на­пример, при попытке положить соперника на ло­патки (борьба), называется мышечной выносливо­стью. Ее определяют, исходя из максимального количества повторений, выполняемых при дан­ном количестве 1-ПМ. Например, если вы мо-

Спортсмен А — Боб

Спортсмен Б — Бен

Спортсмен В — Билл

200 фунтов 200 фунтов, поднятых на высоту 2 фута за 0,5 с, или 800 футов-фунт-с"’ 10 повторений с массой 150 фунтов

400 фунтов’ ‘-• 400 фунтов, поднятых на высоту 2 фута за 2 с, или 400 футов-фунт-с"’ 10 повторений с массой 300 фунтов

400 фунтов 400 фунтов, поднятых на высоту 2 фута за 1 с, или 800 футов-фунт-с"’ 5 повторений с массой 300 фунтов

* Силу определали на основании максимума одного повторения (1-ПМ). Мощность определяли, выполняя как можно более "взрывным" образом тест 1-ПМ.

Мощность исчисляли как произведение скорости приложения усилия (поднятая масса) для поднятия массы на данное расстояние, разделенное на время, необхъодимое для выполнения 1-ПМ. Мышечную выносливость определяли по наибольшему числу повторений, выполненных с 75 % 1-ПМ. По Уилмору, 1986 ( с изменениями).

ность определяли, выполняя, ибольшему числу повторений,

жете отжать, лежа на скамье, массу 200 фунтов, вашу мышечную выносливость можно опреде­лить, независимо от величины мышечной силы, на основании количества повторений, выполня­емых при, например, 75 % данной нагрузки (150 фунтов). Повышение мышечной выносливости осуществляется за счет увеличения мышечной силы и вследствие изменения локальных струк­тур (паттернов) обмена веществ и кровообраще­ния. Метаболические адаптационные реакции вследствие тренировок будут рассмотрены в гла­ве 7, адаптационные системы кровообращения — в главе 10.

Табл. 4.1 иллюстрирует функциональные раз­личия в силе, мощности и мышечной выносли­вости у трех спортсменов. Действительные по­казатели слегка изменены для лучшей иллюст­рации.

1. Максимальная величина усилия мышцы или группы мышц называется мышечной силой.

2. Мышечная мощность — результат силы и скорости движения. Два человека могут иметь одинаковую силу, но тот из них, которому требу­ется меньше времени для перемещения отягоще­ния одной и той же массы на одно и то же рас­стояние, обладает большей мощностью.

3. Мышечная выносливость представляет со­бой способность мышц выполнять повторяющи­еся мышечные действия или отдельное статичес­кое действие.

УВЕЛИЧЕНИЕ СИЛЫ ВСЛЕДСТВИЕ СИЛОВОЙ ТРЕНИРОВКИ

Программы силовой подготовки обеспечива­ют значительное увеличение силы. В течение 3 — 6 мес вы можете увеличить силу на 25 — 100 % и даже больше. Как стать сильнее? Какие физиоло­гические адаптации, позволяющие приложить большую силу, происходят в организме?

В течение многих лет считали, что увеличение силы — непосредственный результат увеличения размера мышц (гипертрофии). Такое предполо­жение было весьма логичным, поскольку боль­шинство регулярно занимавшихся силовыми тре­нировками были мужчины, чаще всего имевшие большие, хорошо развитые мышцы. Кроме того, иммобилизация конечности с помощью гипсовой повязки на несколько недель или месяцев приво­дила к уменьшению размера мышц (атрофии) и

почти немедленному снижению уровня силы. Увеличение размера мышц, как правило, парал­лельно увеличению силы, а уменьшение их раз­мера имеет высокую степень корреляции со сни­жением силы. Таким образом, логично сделать вывод о существовании причинно-следственной взаимосвязи размера мышц и их силы. Однако мышечная сила включает в себя значительно боль­ше аспектов, чем просто размер мышц. Рассмот­рим некоторые примеры.

Неоднократно в средствах массовой инфор­мации появляются сообщения о проявлении сверхчеловеческих усилий под действием значи­тельных психологических стрессов. Смиритель­ные рубашки были специально созданы для того, чтобы сдерживать пациентов психиатрических больниц, которые могли внезапно прийти в не­истовство и с которыми невозможно было спра­виться. Даже спортивный мир может похвастать­ся отдельными примерами сверхчеловеческих спортивных достижений. Одним из них был пры­жок в длину Боба Бимона на 29 футов 2 1/2 дюйма на Олимпийских играх 1968 г. Предыдущий ми­ровой рекорд был сразу же улучшен почти на 2 фута! Как правило, рекорды мира улучшают на несколько дюймов, а чаще всего — на доли дюй­мов. Бимона оставался непревзойден­ным до 1991 г.

Исследования с участием женщин

Для женщин, занимающихся по одинаковым с мужчинами программам тренировок, харак­терны такие же увеличения силы, как и для муж­чин. Единственное отличие состоит в том, что для женщин характерна меньшая степень гипер­трофии мышц (см. гл. 19). Некоторые женщи­ны, например, смогли увеличить свою силу вдвое без заметных изменений размера мышц. Следо­вательно, увеличение силы не всегда требует ги­пертрофии.

Структурно-функциональные особенности двигательных единиц мышц. Мышца является исключительно разнородной тканью, состоящей преимущественно из мышечных волокон, соединительнотканных, нервных и сосу­дистых элементов, которые в комплексе обеспечива­ют ее главную функцию — активное сокращение. В структуре мышечной ткани различают два типа мышечных волокон — медленно сокращающиеся (МС) и быстро сокращающиеся (БС). Такое деле­ние значительно упрощает тканевую организацию мышц, среди которых имеются разные виды мышц, обусловленные, прежде всего морфофункциональными свойствами их волокон. Однако выделенные типы мышечных волокон представляют собой относительно самостоятельные функциональные еди­ницы, отличающиеся морфологическими, биохими­ческими и сократительными свойствами. МС-волокна обладают следующими свойствами: медленной скоростью сокращения, большим коли­чеством митохондрий («энергоцентр» клетки), высокой активностью оксидативных энзимов (проте­ины содействуют быстрой активизации источников энергии), прекрасной васкуляризацией (много капил­ляров), высоким потенциалом накопления гликоге­на. БС-волокна имеют менее развитую сеть капил­ляров, меньшее число митохондрий, высокую гликолитическую способность, высокую активность неоксидативных энзимов и более высокую скорость сокращения. В одной и той же мышце содержатся БС- и МС-волокна. БС-волокна содержат активный фер­мент АТФазу, который мощно расщепляет АТФ с образованием больших количеств энергии, что обеспечивает быстрое сокращение волокон. В МС-волокнах активность АТФазы низкая, в связи с чем энергообразование в них совершается медленно. Ферментативное расщепление АТФ считается од­ним из важных факторов, определяющих присущую мышце скорость сокращения. Ферменты, которые расщепляют сахар и жиры, активны в МС-волокнах, что позволяет объяснить весьма существенные различия между различными типами волокон. Различают две подгруппы БС-волокон: БСа и БСб. БСа-волокна называют быстро сокращающи­мися оксидативно-гликолитическими волокнами. Они отличаются высокими сократительными способностями и одновременно обладают высокой сопротивляемостью утомлению. Именно эти волок­на хорошо подвержены тренировке на выносли­вость. БСб-волокна — классический тип быстро сокращающихся волокон, работа которых связана с использованием анаэробных источников энергии. Каждый из указанных типов волокон достаточно хорошо идентифицируется под микроскопом после соответствующего окрашивания срезов. Установлено, что состав в мышцах волокон и двигательных единиц детерминирован генетически. Наследуемые гены уже в раннем детском возрасте определяют количество и строение мотонейронов, которые формируют двигательные единицы и иннервируют мышечные волокна. После установления иннервации дифференцируются типы мышечных волокон. По мере старения соотношение мышеч­ных волокон изменяется: уменьшается количество БС-волокон, что приводит к увеличению процента МС-волокон. Мышечные волокна объединяются в двигательные единицы (группы мышечных волокон, иннервируемых одним мотонейроном), каждая из них состоит из мышечных волокон определенного типа. Стро­ение и функции мотонейронов соответствуют строению и функциям объединяемых ими мышеч­ных волокон. Мотонейрон медленно сокращаю­щейся двигательной единицы объединяет группы из 10-180 МС-волокон и имеет небольшое клеточ­ное тело. Мотонейрон быстро сокращающейся дви­гательной единицы иннервирует от 300 до 800 БС-волокон и отличается большим клеточным телом и большим количеством нервных отростков.

Читайте также:  Анатолий волков диетолог

В последние десятилетия в связи с прогрессом биохимии и морфологии появилась возможность значительно глубже изучить структуру и функции мышечных волокон и двигательных единиц мышц, расширить представления об особенностях их адап­тации к тренировочным и соревновательным наг­рузкам. Время, необходимое для максимального напря­жения БС-волокон, обычно не превышает 0,3-0,5с, в то время как МС-волокна способны развить максимальное напряжение лишь через 0,8-1,1с. Ак­тивность анаэробных ферментов БС-волокон мо­жет в два раза и более превышать активность этих ферментов в МС-волокнах. В то же время активность аэробных ферментов в МС-волокнах примерно в два раза превышает аналогичные показатели БС-волокон. Говоря о пропорциях различных мышечных во­локон у человека, следует отметить, что и у муж­чин, и у женщин несколько больше МС-волокон (по данным различных авторов — от 52 до 55 %). Это достаточно ярко иллюстрируется результатами исследований, в которых участвовали 45 девушек и 70 юношей в возрасте 16 лет. Среди БС-волокон преобладают волокна типа БСа (30-35 %). БСб-волокон значительно меньше 12-15 %. При этом нужно указать, что в мышцах у женщин редко отмечается значительное пре­валирование какого-либо типа волокон, которое наблюдается в мышцах у мужчин. При рассмотрении адаптации мышц человека в процессе тренировки следует учитывать особен­ности распределения мышечных волокон различно­го типа в одной мышце и в различных мышцах. Специальные исследования показали, что в одной мышце изменения в содержании различных типов волокон отсутствуют или незначительны. Неболь­шие различия (до 5-10 %) могут наблюдаться при сравнении результатов проб, относящихся к цен­тральной и периферической частям мышцы: цен­тральная часть мышцы может содержать больше МС-волокон. У одного человека наблюдается относительная однородность структуры различных мышц. Однако наряду со структурной схожестью отдельных мышц конкретного индивидуума могут наблюдаться и существенные различия, обусловленные функцией, которую обычно выполняет мышца, и требованием, диктуемым этой функцией мышечным волокнам определенного типа. Например, четырехглавая и икроножная мышцы нижних конечностей, дельто­видная и двуглавая мышцы плеча имеют примерно одинаковые соотношения БС- и МС-волокон. В то же время камбаловидная мышца содержит на 25—40 % больше МС-волокон по сравнению с другими мышцами ног, а трехглавая мышца плеча содержит на 10—30 % больше МС-волокон по сравнению с другими мышцами пояса верхней ко­нечности. Специальная тренировка приводит к утолщению всех типов волокон, осо­бенно БСб, которые в обычной жизни малоактив­ны и очень тяжело вовлекаются в деятельность.

Спортивная специализация и структура мышечной ткани. У спортсменов высокого класса наблюдаются различные соотношения мышечных волокон и с количеством БС-волокон существует тесная корре­ляционная связь (г = 0,73). Увеличение длины дис­танций связано со снижением этой связи (г = 0,45). При увеличении дистанции до 2000м, время пробега которой у испытуемых превышало 5 мин, связь приобретает отрицательный характер: наличие большого количества БС-волокон в нагружаемых мышцах отрицательно сказывается на результате. Таким образом, количество мышечных волокон оп­ределенного типа в значительной мере обусловлива­ет достижения спортсменов в различных видах сорев­нований. В спринтерской, скоростно-силового ха­рактера, работе (бег на 100м, бег на коньках на 500м, плавание на 50м, легкоатлетические прыжки и т. п.) большое значение имеют БСб-волокна. В беге на 400 и 800м, плавании на 100 и 200м и т. п. очень велика роль БСа-волокон, функциональные свойства которых отвечают требованиям эффектив­ной соревновательной деятельности в этих видах со­ревнований. Успех в стайерских дисциплинах раз­личных видов спорта в решающей мере определяется количеством МС-волокон. Структура мышечной ткани во многом зависит от квалификации спортсменов. Например, у тяжелоатлеток различной квалификации отмечается раз­личный процент БС-волокон. У спортсменов низ­кой квалификации таких волокон обычно не более 45-55%. Спортсмены международного класса имеют значительно более высокий процент воло­кон – 60-70%.

Изменения в мышечных волокнах под влиянием нагрузок различной направленности. Оба типа мышечных волокон имеют характерис­тики, которые могут быть изменены в процессе тре­нировки. Размеры и объем БС-волокон увеличиваются под влиянием тренировки «взрывного» типа. Одновре­менно повышается их гликолитическая способность. При тренировке на выносливость оксидативный по­тенциал МС-волокон может возрастать в 2-4 раза. Среднее количество капилляров вокруг МС- и БСа-волокон составляет 4, а вокруг БС-волокон – 3. У спортсменов высокого класса, выступающих на длинных дистанциях, мышцы снаб­жались 5-6 капиллярами. Эффект напряженной тре­нировки аэробного и смешанного (аэробно-анаэ­робного) характера проявляется в увеличении коли­чества капилляров на мышечное волокно или на квадратный миллиметр мышечной ткани. Здесь вы­являются два механизма: увеличение количества ка­пилляров; если же возможности этого механизма ис­черпаны или невелики, то происходит уменьшение размера мышечных волокон. О том, что длительная и напряженная тренировка аэробной направленности приводит к изменению соотношения волокон различных типов, косвенно свидетельствуют результаты многочисленных ис­следований композиции мышечной ткани, несу­щей основную нагрузку в тренировочной и сорев­новательной деятельности в сравнении с тканью, не подвергающейся активной тренировке. У гребцов на байдарках и пловцов-стайеров в дельтовидной мышце регистрировалось до 60-70% МС-воло­кон, а в широкой мышце бедра таких волокон было не более 45-60 %. У велосипедистов-шоссейников, лыжников, бегунов-стайеров картина противоположная: в икроножной мышце регистри­ровалось до 60-80 % и более МС-волокон, а в дельтовидной мышце и трехглавой мышце плеча количество МС-волокон у этих же спортсменов не превышало 50-60%. МС-волокна очень слабо подвержены скорос­тной тренировке. Так, спортсмены, в мышцах ко­торых содержится малое количество БС-волокон, слабо приспосабливаются к скоростной работе даже после напряженной тренировки скоростного харак­тера. Например, высота прыжка вверх у спортсме­нов, специализирующихся в плавании, обычно не превышает 45-50см, в то время как у спортсменов с большим количеством БСа- и БСб-волокон она редко бывает меньше 70см. Анализ струк­туры и распределения митохондрий и частиц ней­тральных жиров при помощи электронной мик­роскопии показал, что в БСб-волокнах отмечается наименьшее количество митохондрий по сравне­нию с БСа-волокнами и особенно с МС-волокнами. Частицы жиров в БСб-волокнах вообще отсут­ствуют, в БСа-волокнах их немного, а в МС-волокнах они встречаются в очень большом количес­тве. Все это убедитель­но свидетельствует о значительном воздействии характера тренировочной и соревновательной деятельности на характеристики мышечных волокон, существенно влияющие на их функциональные воз­можности. Рассматривая гипертрофию мышечных волокон в качестве одного из основных путей адаптации мышц, следует указать, что гипертрофия МС-воло­кон связана, прежде всего, с увеличением размеров миофибрилл, возрастанием количества и плотности митохондрий, приводит к увеличению удельно­го веса в мышечной массе МС-волокон и, как следствие, повышению выносливости и уменьше­нию скоростных способностей мышц. С другой стороны, гипертрофия БС-волокон приводит к уве­личению их удельного веса в мышце по сравне­нию с МС-волокнами и способствует повышению ее скоростного потенциала. При этом характер нагрузки определяет, какие из мышечных волокон претерпевают значительные изменения. Продолжительные нагрузки относитель­но невысокой интенсивности преимущественно приводят к увеличению объемной плотности мито­хондрий МС- и БСа-волокон. Интенсивная интер­вальная работа в основном способствует возникновению изменений в БСб-волокнах. Гипертрофия мышцы связана с рядом измене­ний, в числе которых, прежде всего, следует отме­тить увеличение резервов актиновых и особенно миозиновых нитей, увеличение количества миофибрилл и кровеносных капилляров. Длительное время считалось, что количество мышечных волокон в каждой мышце детерминиро­вано генетически и остается неизменным в течение всей жизни. Однако в отдельных работах была продемонстрирована возможность гиперплазии мышц в ответ на большие физичес­кие нагрузки. Однако наличие этого явления от­рицалось на основании экспериментов, проведен­ных на животных. Вместе с тем в последние годы появляется все больше доказательств того факта, что нап­ряженная и длительная силовая тренировка при­водит не только к гипертрофии мышечных воло­кон, но и к увеличению их количества. Силовая тренировка с большими отя­гощениями и небольшим количеством повторений в течение двух лет не только привела к увеличе­нию мышечной силы и гипертрофии мышц, но и к достоверному увеличению (на 9%) общего коли­чества мышечных волокон. Возможность процесса гиперплазии у людей была доста­точно убедительно показана в исследованиях с участи­ем культуристов. Принципиально важным вопросом для спортив­ной практики является возможность трансформации мышечного фенотипа, преобразования волокон од­ного типа в волокна другого. Структура и функциональные возможности мы­шечных волокон различного типа обусловливаются особенностями их нервной импульсации, которая и определяет, будет ли данное волокно иметь свой­ства быстро сокращающегося или медленно сокра­щающегося волокна. Если БС-волокна стимулируются по принципу импульсации МС, то в них повышается активность оксидативных ферментов. И, наоборот, стимуляция МС-волокон по принципу БС приводит к повышению активности гликолитических фер­ментов.

Исследования на животных показали, что иннер­вация БС-волокон путем переноса в нерв (при помо­щи специальных электродов) электроимпульсов с частотной характеристикой, соответствующей иннер­вации МС-волокон, приводит к изменению структурных и функциональных свойств волокон. В волокнах увеличивается плотность капилляров, пов­ышается содержание миоглобина, что приводит к изменению цвета бледных волокон, которые становятся ярко-красными. Оксидативные способности волокон повышаются за счет увеличе­ния активности ферментов, окисляющих субстраты. Одновременно угнетается анаэробная способность волокон в связи со снижением активности фермен­тов, участвующих в процессе гликолиза.

Читайте также:  Max user watches

В результате интенсивной и продолжительной тренировки, направленной на развитие выносли­вости, также наблюдаются существенные структур­ные и функциональные изменения БС-волокон. Изменения активности аэробного и анаэробного путей обмена качественно напоминают метаболи­ческие трансформации, отмеченные в результате искусственно стимулированных мышц. Значитель­ные изменения отмечаются в митохондриях, плот­ности капиллярной сети, в составе миозина. Однако адаптационные перестройки выражены гораздо меньше, чем в тех случаях, когда обеспечивается постоянная стимуляция. В связи с этим существует мнение, что окислительные спо­собности тренированных мышц спортсменов высокого класса, специализирующихся в видах спорта, требующих высокого уровня аэробных воз­можностей, составляют лишь 50-70 % теорети­чески достижимого уровня.

Известно, что БС-волокна используют в еди­ницу времени намного больше энергии, чем МС-волокна. Воздействие специальной тренировки, проявляющееся в трансформации БС-волокон в МС, представляет собой определенный вид экономизации функций, так как создает условия для выполне­ния продолжительной работы с меньшими затрата­ми энергии. Однако эта экономизация связана с существенным уменьшением ско­рости сокращений.

Таким образом, тренировка на выносливость способна значительно повысить возможности окислительного способа энергообеспечения не только БСа-, но и БСб-волокон. Более того, тре­нированные на выносливость БСа-волокна по сво­им окислительным способностям могут даже превы­шать показатели МС-волокон, характерные для нетренированного человека. Большие объемы работы на выносливость могут даже привести к такой тран­сформации БСб-волокон, что их вообще не удастся обнаружить в поперечном срезе мышцы. Естес­твенно, что эти изменения приводят к резкому сни­жению скоростных возможностей мышц. Специалисты считают, что восстановление БС-мышц в принципе возможно, однако очень сложно и в настоящее время неизвестно, какие средства явля­ются для этого наиболее эффективными. Одной из основных проблем обратной тран­сформации быстросокращаюшейся мышечной тка­ни в медленную является то, что БС-волокна, вслед­ствие высокого порога возбуждения, значительно реже и сложнее включаются как в повседневную, так и в спортивную деятельность.

Глава 5. Адаптация мышечной ткани

Уважаемые коллеги, как приятно, отработав 5–6 лет с группой спортсменов получить прекрасный качественный материал для спорта высших достижений. Каждый спортсмен представляет конечный результат, многолетней тренерской работы. Грамотно заложив основы двигательных и координационных качеств, мы получим итог в виде многофункциональной подготовленности нашего воспитанника. Где одно из составляющих уровня подготовленности спортсмена, мышечное развитие.

Каждый день, на тренировочных занятиях, так или иначе, воздействуем на мышечную систему и хотим иметь запланированный результат. В чем же выражается результат? В скорости движений, точности, стабильности выступлений на соревнованиях, силы удара, выносливости или в удароустойчивости по ходу поединка?

Давайте внимательно изучим воздействие физической нагрузки на качественные изменения, происходящие в мышцах. В большинстве случаев направленность физической нагрузки формирует мышечную систему организма. Одаренный спортсмен – это находка, но целеустремленный и трудолюбивый воспитанник, мотивированный на результат – это удача.

Чтобы понять основы адаптации мышечной ткани к нагрузке необходимо вникнуть в биохимические основы работы мышц и мышечных групп. Мышца является разнородной тканью, состоящей из мышечных волокон, соединительнотканных, нервных и сосудистых элементов, которые осуществляют главную функцию – своевременное сокращение.

В структуре мышечной ткани различают типа мышечных волокон – медленносокращающиеся (МС) и быстросокращающиеся (БС). Этот постулат знают все. Но использовать в полной мере знания на практике о свойствах мышечных волокон могут не все.

Первое , учебно-тренировочный процесс направлен на тренировку мышечных групп. Можно развить МС-волокна и получить высокий уровень специальной выносливости. Можно развить БС-волокна и значительно улучшить скоростно-силовые качества. Чтобы понять процессы изменений необходимо понять свойства МС и БС волокон .

В практике преподавания тхэквондо излишняя направленность на тренировку МС-волокон приведет к потери скорости и силы удара.

МС-волокна обладают следующими свойствами: небольшой скоростью сокращения, большим количеством митохондрий («энергоцентр» клетки), высокой активностью оксидативных энзимов (протеины способствуют быстрой активизации источников энергии), широкой васкуляризацией (большое количество капилляров), высоким потенциалом накопления гликогена.

БС-волокна имеют мене развитую сеть капилляров, меньшее число митохондрий, высокую гликолитическую способность, высокую активность неоксидативных энзимов и более высокую скорость сокращения. В одной и той же мышце содержатся БС– и МС-волокна. БС-волокна содержат активный фермент АТФазу, который расщепляет АТФ (адезинотрифосфат) с образованием больших количеств энергии, что обеспечивает быстрое сокращение волокон. В МС-волокнах активность АТФазы низкая, в связи с чем энергообразование в них совершается медленно.

Для единоборств, связанных с ударной техникой, важно ферментативное расщепление АТФ. АТФ считается одним из важных факторов, определяющих присущие мышце скорость сокращения.

Второе , в контактных ударных единоборствах: тхэквондо, кёкусинкай, стилевом тхэквондо, кикбоксинге основную мышечную работу осуществляют БС-волокна.

В большинстве случаев на соревнованиях побеждает спортсмен, получивший оценку за качественное техническое действие. Качественное техническое действие характеризуется быстротой и силой выполнения. Практически полностью удар осуществляется за счет БС-волокон.

Различают две подгруппы БС-волокон: БСа и БСб. БСа-волокна называют быстросокращающимися оксидативно-гликолитическими волокнами. Они отличаются высокими сократительными способностями и одновременно обладают высокой сопротивляемостью утомлению. Эти волокна хорошо подвержены тренировке на выносливость. БСб-волокна – классический тип быстросокращающихся волокон, работа которых связана с использованием анаэробных источников энергии. Каждый из указанных типов волокон достаточно хорошо идентифицируется под микроскопом после соответствующего окрашивания срезов. Именно развитие данных видов быстрых волокон определяет качество движений и выполнение модельных характеристик поединка.

Третье , соревновательные правила поединка выставляют свои требования к спортсмену. Тем самым на основе оценки соревновательной деятельности (ОСД) требования к уровню подготовленности воспитанника определяются модельными характеристиками. Модель спортсмена предусматривает качественные характеристики усредненных показателей, характеризующих поединок.

В тхэквондо существуют уровни компенсации ведения поединка. Если спортсмен генетически вынослив или силен, то тактика боя выстраивается на основных доминирующих генотипах. В процессе подготовки спортсмен приобретает опыт и навыки соревновательной деятельности с разными партнерами.

Доказано , соотношение мышечных волокон разных типов детерминировано генетически. У каждого спортсмена с рождения заложено конкретное количество мышечных волокон. Структура мышечного волокна, соотношение волокон различного типа заложены на уровне ДНК и в значительной мере определяются особенностями нейромышечной регуляции, о чем вполне убедительно свидетельствуют исследования, в которых изучалось влияние на изменение типа мышечного волокна перекрестной иннервации. Таким образом, генетически заданный тип иннервации обеспечивает формирование фенотипа мышечной ткани, которая лишь в относительно узких границах может быть модифицирована напряженной тренировкой. Т.е в результате целенаправленных тренировок мышечные волокна могут видоизмениться и из БСа в МС и БСб в БСа.

Четвертое , тренировка мышечных волокон стимулирует работу мотонейронов. Включение мотонейронов БС-волокон в выполнение двигательного акта, способствует поддержке модельных характеристик поединка.

В практике тхэквондо достаточно часто в тренировочном процессе за счет средств физкультуры и спорта необходимо включать в работу большие группы мышц, иннервируемые мотонейронами. Например акробатические упражнения.

БС-волокон. Мышечные волокна объединяются в двигательные единицы (группы мышечных волокон, иннервируемых одним мотонейроном), каждая из которых состоит из мышечных волокон определенного типа. Строение и функции мотонейронов соответствуют строению и функциям объединяемых ими мышечных волокон. Мотонейрон медленно сокращающейся двигательной единицы объединяет группы из 10—180 МС-волокон и имеет небольшое клеточное тело. Мотонейрон быстросокращающейся двигательной единицы иннервирует от 300 до 800 БС-волокон и отличается большим клеточным телом.

Конечный результат в тренировочном процессе зависит от изменения в мышечных волокнах под влиянием нагрузок различной величины и направленности. Именно величина нагрузок и их направленность формируют необходимые качества мышц и задействуют определенные группы мышечных волокон. Воздействие не продуманной нагрузкой на мышечную систему в итоге даст адаптационную реакцию тренированности не тех мышечных волокон. И как итог невозможность полноценной реализации в спорте.

Пятое , интенсивная длительная тренировка приводит к изменению свойств мышечных волокон. Причем плановые положительные изменения в БС волокнах происходят гораздо медленнее, чем обратные деформации из БС в МС. Тут важно понимать особенность механизмов энергообеспечения. Аэробные нагрузки вызывают изменения из БС в МС волокна.

В практике тренировок тхэквондо направленность анаэробной работы значительно в процентном отношении преобладает над аэробной. Между анаэробными упражнениями паузы отдыха должны быть длительными. Недостаточная пауза отдыха запустит механизм аэробного обеспечения, а с ним механизм тренировки МС-волокон.

В настоящее время вопрос о превращении одного типа мышечных волокон в другой под влиянием специфической тренировки остается до конца не решенным. Специалисты склоняются к мнению, что соотношение мышечных волокон различного типа у человека обусловлено генетически. Что касается влияния интенсивной тренировки определенной направленности (развитие выносливости к длительной работе, скоростно-силовой), то она приводит к существенному изменению морфологических, физиологических и биохимических свойств мышечных волокон. Под влиянием тренировки, направленной на повышение выносливости, трансформация свойств мышечных волокон различных типов происходит в следующем порядке: БСб-волокна приобретают свойства БСа-волокон, а БСа-волокна – свойства МС-волокон. Силовая подготовка вызывает обратный процесс: МС-волокна приобретают свойства БСа-волокон, а БСа-волокна – соответственно свойства БСб-волокон.

Оба типа мышечных волокон имеют характеристики, которые могут быть изменены в процессе тренировки. Размеры и объем БС-волокон увеличиваются под влиянием тренировки скоростного, скоростно-силового и силового типа, в результате чего их процентное соотношение в площади поперечного сечения мышцы возрастает. Одновременно повышается их гликолитическая способность. При тренировке на выносливость оксидативный потенциал МС-волокон может возрастать в 2–4 раза.

МС-волокна очень слабо подвержены скоростной тренировке. Так, спортсмены, в мышцах которых содержится малое количество БС-волокон, слабо приспосабливаются к скоростной работе даже после напряженной тренировки скоростного характера. Например, высота прыжка вверх у таких спортсменов, специализирующихся в плавании, обычно не превышает 45–50 см, в то время как у спортсменов с большим количеством БСа– и БСб-волокон она редко бывает ниже 70 см.

Читайте также:  Iwown i7 инструкция на русском

Принципиально важным вопросом для спортивной практики является возможность трансформации мышечного фенотипа, преобразования волокон одного типа в волокна другого. Структура и функциональные возможности мышечных волокон различного типа обусловливаются особенностями их нервной импульсации, которая и определяет, будет ли данное волокно иметь свойства быстросокращающегося или медленносокращающегося. Если БС-волокна стимулируются по принципу импульсации МС, то в них повышается активность оксидативных ферментов. И, наоборот, стимуляция МС-волокон по принципу БС приводит к повышению активности гликолитических ферментов.

Адаптация различных типов мышечных волокон находится в строгой зависимости от направленности тренировочного процесса. Например, у велосипедистов-шоссейников не только отмечается большой процент МС-волокон по сравнению с лицами, не занимающимися спортом, или спортсменами других специализаций, но и существенная гипертрофия (до 20–30 %) этих волокон при одновременной атрофии или перестройке БСб– и БСа-волокон. В результате при среднем проценте МС-волокон у велосипедистов-шоссейников около 70–75 % они могут занимать до 85–90 % и более общего поперечного сечения мышц, несущих основную нагрузку при педалировании.

Шестое , капиллярное обеспечение образуется в результате адаптации к нагрузке рабочих групп мышц. Процессы формирования капиллярной сети вследствие ежедневных направленных тренировок вокруг волокон длятся до 40 дней .

Не совпадение физиологических сроков завершения процесса образования капилляров, обеспечивающих питание рабочих, тренируемых групп мышц, с календарным мероприятием отрицательно скажешься на результате соревнований.

Среднее количество капилляров вокруг МС – БСа-волокон составляет 4, а вокруг БСб-волокон – 3. У спортсменов высокого класса, выступающих на длинных дистанциях, в дельтовидных мышцах пловцов и икроножных мышцах бегунов были обнаружены МС-волокна, каждое из которых снабжалось 5–6 капиллярами. Эффект напряженной тренировки аэробного и смешанного (аэробно-анаэробного) характера проявляется в увеличении количества капилляров на мышечное волокно или на квадратный миллиметр мышечной ткани. Здесь выявляются два механизма: увеличение количества капилляров; если же возможности этого механизма исчерпаны или невелики, то происходит уменьшение размера мышечных волокон.

Длительная и напряженная тренировка аэробной направленности приводит к изменению соотношения волокон различных типов. Об этом свидетельствуют результаты многочисленных исследовании композиции мышечной ткани, несущей основную нагрузку в тренировочной и соревновательной деятельности в сравнении с тканью, не подвергавшейся активной тренировке. У гребцов на байдарках и пловцов-стайеров в дельтовидной мышце регистрировалось до 60–70 % МС-волокон, а в широких мышцах бедра таких волокон было не более 45–60 %. У велосипедистов-шоссейников, лыжников, бегунов-стайеров картина противоположная: в икроножной мышце регистрировалось до 60–80 % и более МС-волокон, а в дельтовидной мышце и трехглавой мышце плеча их количество у этих же спортсменов не превышало 50–60 %. В единоборствах соотношение МС и БС должно определяться оптимальными показателями модельных характеристик поединка. Причем, при построении тактических схем должен учитываться темперамент спортсмена.

Проведены интересные исследования, отражающие структуру, функциональные возможности и особенности адаптации мышечных волокон различного типа. Анализ структуры и распределения митохондрий и частиц нейтральных жиров с помощью электронной микроскопии показал, что в БСб-волокнах отмечается значительно меньшее количество митохондрий по сравнению с БСа-волокнами и, особенно, МС-волокнами. Частицы жиров в БСб-волокнах отсутствуют вообще, в БСа-волокнах их немного, а в МС-волокнах они встречаются в очень большом количестве. У хорошо тренированных бегунов на длинные дистанции по сравнению со студентами спортивного вуза в БСб-волокнах заметных различий указанных выше компонентов не отмечено. В БСа-волокнах у бегунов большее содержание митохондрий и частиц нейтральных жиров, в МС-волокнах доля центральных митохондрий – в 2 раза, а периферийных – в 3 раза выше, чем у студентов спортивных вузов. У бегунов выявлено увеличение количества и объема митохондрий, а также в 3 раза более высокое содержание частиц нейтральных жиров. У них также установлены положительные корреляции массы митохондрий с величинами максимального потребления кислорода и отрицательные корреляции – с величиной лактата при субмаксимальной нагрузке. Все это свидетельствует о значительном воздействии характера тренировочной и соревновательной деятельности на характеристики мышечных волокон, существенно влияющих на их функциональные возможности.

Важно отметить, что рост новых капилляров в результате работы, направленной на повышение выносливости, отмечается не только в МС-волокнах, но и БСа– и, даже, БСб-волокнах. Правда, изменения в БСб-волокнах выражены в значительно меньшей мере, чем в МС– и БСа-волокнах. В результате резко возрастает емкость капиллярного ложе, что ускоряет процесс доставки кислорода и питательных веществ к мышечным волокнам и выведения остаточных продуктов метаболизма.

Основным эффектом увеличения капилляризации мышц является замедление кровотока через капилляры, что способствует улучшению передачи кислорода в мышечные волокна, увеличению артериовенозной разницы.

Седьмое , физическая нагрузка вызывает гипертрофию мышечных волокон, как следствие адаптационных процессов. В единоборствах актуальна гипертрофия БС волокон.

В практике гипертрофия БС-волокон повысит скоростно-силовые параметры подготовленности спортсмена.

Рассматривая гипертрофию мышечных волокон в качестве одного из основных путей адаптации мышц, следует указать, что гипертрофия МС-волокон, связанная, прежде всего, с увеличением размеров миофибрилл, возрастанием количества и плотности митохондрий, приводит к увеличению удельного веса в мышечной массе МС-волокон и, как следствие, к повышению выносливости и уменьшению скоростных способностей мышц. С другой стороны, гипертрофия БС-волокон приводит к увеличению их удельного веса в мышце по сравнению с МС-волокнами и способствует повышению ее скоростного потенциала. При этом характер нагрузки определяет, какие из мышечных волокон претерпевают значительные изменения. Продолжительные нагрузки относительно невысокой интенсивности преимущественно приводят к увеличению объемной плотности митохондрий МС – и БСа-волокон. Интенсивная интервальная работа в основном способствует возникновению изменений в БСб-волокнах.

Гипертрофия мышцы связана с рядом изменений, в числе которых, прежде всего, следует отметить увеличение резервов актиновых и, особенно, миозиновых нитей, увеличение количества миофибрилл и кровеносных капилляров в волокне. Капиллярное кровообращение при тренировочных нагрузках увеличивается постепенно. И при планировании тренировочных объемов необходимо учитывать временные параметры роста капилляр.

Длительное время считалось, что количество мышечных волокон в каждой мышце детерминировано генетически и остается неизменным в течение всей жизни. Однако в отдельных работах была продемонстрирована возможность гиперплазии мышц в ответ на большие физические нагрузки. В дальнейшем появилось достаточное количество доказательств того, что напряженная и длительная силовая тренировка приводит не только к гипертрофии мышечных волокон, но и к увеличению их количества. Силовая тренировка с большими отягощениями и небольшим количеством повторений в течение двух лет не только привела к увеличению мышечной силы и гипертрофии мышц, но и к достоверному увеличению (на 9 %) общего количества мышечных волокон. Возможность процесса гиперплазии у людей была показана в исследованиях с участием культуристов.

Однако вопрос о возможности гиперплазии мышечных волокон под влиянием тренировки все же не является до конца решенным. Действительно, при гипертрофии мышечные волокна могут расщепляться, но есть доказательства того, что расщепление не касается всей длины мышечного волокна и не может являться основанием для утверждения, что имеет место процесс гиперплазии, т. е. деления и увеличения общего количества мышечных волокон. Это дает основание предположить, что количество мышечных волокон у человека является генетически детерминированным и в результате тренировки не изменяется. Косвенным подтверждением этого является и факт, согласно которому увеличение площади поперечного сечения мышечных волокон происходит строго пропорционально увеличению площади поперечного сечения всей мышцы.

В результате интенсивной и продолжительной тренировки, направленной на развитие выносливости, изменения активности аэробного и анаэробного путей обмена качественно напоминают метаболические трансформации, отмеченные в результате искусственно стимулированных мышц. Значительные изменения отмечаются в митохондриях, плотности капиллярной сети, в составе миозина. Однако адаптационные перестройки выражены гораздо меньше, чем в тех случаях, когда обеспечивается постоянная стимуляция. В связи с этим существует мнение, что окислительные способности тренированных мышц спортсменов высокого класса, специализирующихся в видах спорта, требующих высокого уровня аэробных возможностей, составляют лишь 50–70 % теоретически достижимого уровня.

Известно, что БС-волокна используют в единицу времени намного больше энергии, чем МС-волокна. Воздействие специальной тренировки, представляющее в трансформации БС-волокон в МС-волокна, представляет собой определенный вид экономизации функций, так как создает условия для выполнения продолжительной работы с меньшими затратами энергии. Однако эта экономизация связана с существенным уменьшением скорости сокращений.

Таким образом, тренировка на выносливость способна значительно повысить возможности окислительного способа энергообеспечения не только БСа-, но и БСб-волокон. Более того, тренированные на выносливость БСа-волокна по своим окислительным способностям могут даже превышать показатели МС-волокон, характерные для нетренированного человека. Большие объемы работы на развитие выносливости могут даже привести к такой трансформации БСб-волокон, что их вообще не удастся обнаружить в поперечном срезе мышцы. Естественно, что эти изменения приводят к резкому снижению скоростных возможностей мышц. Специалисты считают, что восстановление мышечных БС-волокон в принципе возможно, однако очень сложно и в настоящее время неизвестно, какие средства являются для этого наиболее эффективными. Одной из основных проблем трансформации быстросокращающейся мышечной ткани в медленносокращающуюся является то, что БС-волокна вследствие высокого порога возбуждения значительно реже и сложнее включаются как в повседневную, так и в специальную тренировочную и соревновательную мышечную деятельность.

Вместе с тем никакой специальной тренировкой, связанной с развитием выносливости, невозможно добиться в БС-волокнах таких изменений, которые характерны для хорошо тренированных МС-волокон, и при прочих равных условиях спортсмены с большим количеством МС-волокон всегда будут иметь преимущество на длинных дистанциях над спортсменами, у которых таких волокон значительно меньше.

Гипертрофия различных типов мышечных волокон определяется методикой тренировки. Микроскопическому исследованию были подвергнуты мышцы культуристов, которые в тренировке использовали небольшие отягощения при большом количестве повторений и небольшой скорости движений. Обнаружилось, что МС-волокна были гипертрофированы, в то время как БС-волокна не увеличили своего объема. Применение больших отягощений при небольшом количестве повторений и высокой скорости движений, наоборот, приводит к избирательной гипертрофии БС-волокон, а объем МС-волокон остается без существенных изменений.

Данный текст является ознакомительным фрагментом.

Ссылка на основную публикацию
Wwe актеры 2017
Лити Джозеф «Джо» Аноа’й (Роман Рейнс) родился 25 мая 1985 года. Роман Рейнс - американский профессиональный борец и бывший профессиональный...
Qnt спортивное питание отзывы
Delicious Whey Protein является достойным вариантом европейского сывороточного протеина за разумные деньги. Производится в Бельгии компанией Quality Nutrition Technology, основанной...
R line titan creatine
You are using an outdated browser. Please upgrade your browser to improve your experience. Функциональный мультигейнер Titan Creatine создан технологами...
Www bayerhealthcare ru
Знаменитая немецкая фармацевтическая компания «Bayer» уже полтора века обеспечивает потребителей важнейшими медикаментами из разных отраслей медицины. Специалисты корпорации являются изобретателями...
Adblock detector