Альфа кетоглутарат дегидрогеназа

Альфа кетоглутарат дегидрогеназа

α-кетоглутарат — ключевой продукт Кребса, образуется в результате декарбоксилирования изоцитрата и превращается в сукцинил-CoA в альфа-кетоглутарат дегидрогеназном комплексе. Анаплеротические реакции могут пополнять цикл на данном этапе путём синтеза α-кетоглутарата трансаминированием глутамата, или действием глутаматдегидрогеназы на глутамат. [2]

Синтез аминокислот

Глутамин синтезируется из глутамата с помощью фермента глутаминсинтетазы, которая на первой стадии образует глутамилфосфат, используя в качестве донора фосфата АТР; глутамин образуется в результате нуклеофильного замещения фосфата катионом аммония в глутамилфосфате, продуктами реакции являются глутамин и неорганический фосфат. [2]

Транспорт аммиака

Другой функцией альфа-кетоглутаровой кислоты является транспорт аммиака, выделяющегося в результате катаболизма аминокислот. [2]

α-кетоглутарат — один из важнейших переносчиков аммиака в метаболических путях. Аминогруппы от аминокислот прикрепляются к α-кетоглутарату в реакции трансаминирования и переносятся в печень, попадая в цикл мочевины. [3]

oxoglutarate dehydrogenase
Identifiers
EC number 1.2.4.2
CAS number 9031-02-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

The oxoglutarate dehydrogenase complex (OGDC) or α-ketoglutarate dehydrogenase complex is an enzyme complex, most commonly known for its role in the citric acid cycle.

Contents

Units [ edit ]

Much like pyruvate dehydrogenase complex (PDC), this enzyme forms a complex composed of three components:

Unit EC number Name Gene Cofactor
E1 EC 1.2.4.2 oxoglutarate dehydrogenase OGDH thiamine pyrophosphate(TPP)
E2 EC 2.3.1.61 dihydrolipoyl succinyltransferase DLST lipoic acid, Coenzyme A
E3 EC 1.8.1.4 dihydrolipoyl dehydrogenase DLD FAD, NAD

Three classes of these multienzyme complexes have been characterized: one specific for pyruvate, a second specific for 2-oxoglutarate, and a third specific for branched-chain α-keto acids. The oxoglutarate dehydrogenase complex has the same subunit structure and thus uses the same coenzymes as the pyruvate dehydrogenase complex and the branched-chain alpha-keto acid dehydrogenase complex (TTP, CoA, lipoate, FAD and NAD). Only the E3 subunit is shared in common between the three enzymes. [1]

Properties [ edit ]

Metabolic pathways [ edit ]

This enzyme participates in three different pathways:

Kinetic properties [ edit ]

The following values are from Azotobacter vinelandii (1) :

Citric acid cycle [ edit ]

Reaction [ edit ]

The reaction catalyzed by this enzyme in the citric acid cycle is:

This reaction proceeds in three steps:

  • decarboxylation of α-ketoglutarate,
  • reduction of NAD + to NADH,
  • and subsequent transfer to CoA, which forms the end product, succinyl CoA.

ΔG°’ for this reaction is -7.2 kcal mol −1 . The energy needed for this oxidation is conserved in the formation of a thioester bond of succinyl CoA.

Regulation [ edit ]

Oxoglutarate dehydrogenase is a key control point in the citric acid cycle. It is inhibited by its products, succinyl CoA and NADH. A high energy charge in the cell will also be inhibitive. ADP and calcium ions are allosteric activators of the enzyme.

Читайте также:  200 Г сахара это сколько столовых

By controlling the amount of available reducing equivalents generated by the Krebs cycle, Oxoglutarate dehydrogenase has a downstream regulatory effect on oxidative phosphorylation and ATP production. [2] Reducing equivalents (such as NAD+/NADH) supply the electrons that run through the electron transport chain of oxidative phosphorylation. Increased Oxoglutarate dehydrogenase activation levels serve to increase the concentrations of NADH relative to NAD+. High NADH concentrations stimulate an increase in flux through oxidative phosphorylation.

While an increase in flux through this pathway generates ATP for the cell, the pathway also generates free radical species as a side product, which can cause oxidative stress to the cells if left to accumulate.

Oxoglutarate dehydrogenase is considered to be a redox sensor in the mitochondria, and has an ability to change the functioning level of mitochondria to help prevent oxidative damage. [3] In the presence of a high concentration of free radical species, Oxoglutarate dehydrogenase undergoes fully reversible free radical mediated inhibition. [4] In extreme cases, the enzyme can also undergo complete oxidative inhibition. [4]

When mitochondria are treated with excess hydrogen peroxide, flux through the electron transport chain is reduced, and NADH production is halted. [4] [5] Upon consumption and removal of the free radical source, normal mitochondrial function is restored.

It is believed that the temporary inhibition of mitochondrial function stems from the reversible glutathionylation of the E2-lipoac acid domain of Oxoglutarate dehydrogenase. [5] Glutathionylation, a form of post-translational modification, occurs during times of increased concentrations of free radicals, and can be undone after hydrogen peroxide consumption via glutaredoxin. [4] Glutathionylation “protects” the lipoic acid of the E2 domain from undergoing oxidative damage, which helps spare the Oxoglutarate dehydrogenase complex from oxidative stress.

Oxoglutarate dehydrogenase activity is turned off in the presence of free radicals in order to protect the enzyme from damage. Once free radicals are consumed by the cell, the enzyme’s activity is turned back on via glutaredoxin. The reduction in activity of the enzyme under times of oxidative stress also serves to slow the flux through the electron transport chain, which slows production of free radicals.

In addition to free radicals and the mitochondrial redox state, Oxoglutarate dehydrogenase activity is also regulated by ATP/ADP ratios, the ratio of Succinyl-CoA to CoA-SH, and the concentrations of various metal ion cofactors (Mg2+, Ca2+). [6] Many of these allosteric regulators act at the E1 domain of the enzyme complex, but all three domains of the enzyme complex can be allosterically controlled. [7] The activity of the enzyme complex is upregulated with high levels of ADP and Pi, Ca2+, and CoA-SH. The enzyme is inhibited by high ATP levels, high NADH levels, and high Succinyl-CoA concentrations. [7]

Читайте также:  Алкоголь и его последствия

Stress response [ edit ]

Oxoglutarate dehydrogenase plays a role in the cellular response to stress. The enzyme complex undergoes a stress-mediated temporary inhibition upon acute exposure to stress. The temporary inhibition period sparks a stronger up-regulation response, allowing an increased level of oxoglutarate dehydrogenase activity to compensate for the acute stress exposure. [8] Acute exposures to stress are usually at lower, tolerable levels for the cell.

Pathophysiologies can arise when the stress becomes cumulative or develops into chronic stress. The up-regulation response that occurs after acute exposure can become exhausted if the inhibition of the enzyme complex becomes too strong. [8] Stress in cells can cause a deregulation in the biosynthesis of the neurotransmitter glutamate. Glutamate toxicity in the brain is caused by a buildup of glutamate under times of stress. If oxoglutarate dehydrogenase activity is dysfunctional (no adaptive stress compensation), the build-up of glutamate cannot be fixed, and brain pathologies can ensue. Dysfunctional oxoglutarate dehydrogenase may also predispose the cell to damage from other toxins that can cause neurodegeneration. [9]

Pathology [ edit ]

2-Oxo-glutarate dehydrogrenase is an autoantigen recognized in primary biliary cirrhosis, a form of acute liver failure. These antibodies appear to recognize oxidized protein that has resulted from inflammatory immune responses. Some of these inflammatory responses are explained by gluten sensitivity. [10] Other mitochondrial autoantigens include pyruvate dehydrogenase and branched-chain alpha-keto acid dehydrogenase complex, which are antigens recognized by anti-mitochondrial antibodies.

Activity of the 2-oxoglutarate dehydrogenase complex is decreased in many neurodegenerative diseases. Alzheimer’s disease, Parkinson’s disease, Huntington disease, and supranuclear palsy are all associated with an increased oxidative stress level in the brain. [11] Specifically for Alzheimer Disease patients, the activity of Oxoglutarate dehydrogenase is significantly diminished. [12] This leads to a possibility that the portion of the TCA cycle responsible for causing the build-up of free radical species in the brain of patients is a malfunctioning Oxoglutarate dehydrogenase complex. The mechanism for disease-related inhibition of this enzyme complex remains relatively unknown.

Регуляцию скорости ОПК осуществляя сколько механизмов:

1. аллостерическая регуляция — каждый регуляторный фермент имеет аллостерические эффекторы, концентрация кои изменяется в зависимости от состояния клетки;

2.увеличение активности фермента при высоких концентрации субстрата (например, пируват наиболее эффективный активатор пируватгидрогеназного комплекса);

Читайте также:  280 Мл это сколько грамм

3.ингибирование фермента продуктами peaкции: пируватдегидрогеназный комплекс инибируется ацетил-КоА и НАДН, цитратсинтаза — цитратом;

4. фосфорилирование и дефосфорилированиеПДК (рис.9).

Наиболее сложна регуляция ПДК. Реакция, катализируемая ПДК, связывает между co6oй такие метаболические пути, как гликолиз (распад глюкозы), глюконеогенез (синтез глюкозы), синтез жирных кислот, окисление жирных кислот и цикл Кребса. Можно сказать, что реакции, катализируемые ПДК, представляют собой большой биохимический перекресток.

Рис. 9. Регуляция пируватдегидрогеназного комплекса

В составе ПДК содержатся 2 регуляторные субъединицы: киназа и фосфатаза. Киназа фосфорилирует ПДК и переводит его в неактивную форму, фосфатаза отщепляет фосфорный остаток от ПДК и переводит его в активную форму. Киназа ПДК аллостерически активируется АТФ, НАДН и ацетил-КоА, а ингибируется пируватом, АДФ, НАД, HSKoA, Са 2+ (рис.10).

Киназа ПДК аллостерически активируется НАДН, ацетил-КоА и АТФ, следовательно, при их накоплении прекращается дальнейшее превра­щение пирувата в ацетил-КоА. Такая ситуация создается, например,в печени при голодании: из жировых депо в печень поступают жирные кис­лоты, в митохондриях в результате специфического пути их катаболизма накапли­вается большое количество ацетил-КоА и НАДН. Пируват при этом не окисляется и может быть использован для синтеза глюкозы (глюконеогенеза).

Киназа ПДК аллостерически иигибируется пируватом, AДФ, HSKoA, Са 2+ . В абсорбцион­ный период глюкоза поступает в клетки и распа­дается с образованием пирувата. Высокая кон­центрация пирувата действует на ПДК двумя способами:

• поддерживает ПДК в нефосфорилированной активной форме, так как это наиболее сильный ингибитор киназы ПДК;

• аллостерически активирует нефосфорилированную активную форму ПДК, действуя согласованно с другими активаторами — субстратами реакций — НАД + и HSKoA. В результате создаются условия для образо­вания ацетил-КоА из глюкозы. Ацетил-КоА может окисляться в ЦТК; в печени и жировой ткани часть ацетил-КоА исполь­зуется для синтеза жирных кислот.

Регуляция ионами Ca 2+ особенно важна в мыш­цах. Потенциал действия увеличивает концентра­цию Ca 2+ в митохондриях, что одновременно ингибирует киназу и активирует фосфатазу; это быстро переводит ПДК в активную нефосфорилированную форму. Одновременно Са 2+ активи­рует регуляторные ферменты ЦТК, и ацетил-КоА быстро окисляется, обеспечивая синтез АТР для работы мышц.

В адипоцитах инсулин, действуя через мемб­ранные рецепторы, приводит к увеличению кон­центрации Ca 2 ‘ 1 ‘ в митохондриях, что активирует фосфатазу ПДК и переводит его в активное нефосфорилированное состояние. В результате создают­ся условия для превращений: пируват ® ацетил-КоА ® жирные кислоты ® жиры, т.е. из продуктов распада глюкозы синтезируются жиры — основная форма запасания энергии в организме.

Регуляция ОПК дает возможность переключать метаболические пути, например в абсорбционный период продукты катаболизма глюкозы в печени используются для синтеза жиров, окисление жирных кислот в печени при голодании делает возможным использование пирувата для синтеза глюкозы.

Дата добавления: 2015-09-18 ; просмотров: 2558 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Акустическая травма уха симптомы
Акустическая травма (акутравма) – поражение внутреннего уха, вызванное одномоментным или постоянным воздействием чрезмерно сильного звука или шума. Основные симптомы острого...
Wwe актеры 2017
Лити Джозеф «Джо» Аноа’й (Роман Рейнс) родился 25 мая 1985 года. Роман Рейнс - американский профессиональный борец и бывший профессиональный...
Www bayerhealthcare ru
Знаменитая немецкая фармацевтическая компания «Bayer» уже полтора века обеспечивает потребителей важнейшими медикаментами из разных отраслей медицины. Специалисты корпорации являются изобретателями...
Алан пиз как бросить курить
Меня зовут Андрей Колесников, я являюсь партнером Центра Аллена Карра в России. На период самоизоляции мы предлагаем пройти видеокурс со...
Adblock detector