Альфа окисление жирных кислот

Альфа окисление жирных кислот

Окисление жирных кислот протекает в печени, почках, скелетных и сердечных мышцах, в жировой ткани.

Ф.Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в b-окислении. В результате от молекулы жирной кислоты отщепляются двууглеродные фрагменты со стороны карбоксильной группы. Процесс b-окисления жирных кислот складывается из следующих этапов:

Активация жирных кислот. Подобно первой стадии гликолиза сахаров перед b-окислением жирные кислоты подвергаются активации. Эта реакция протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима А (НS-КоА) и ионов Mg 2+ . Реакция катализируется ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Транспорт жирных кислот внутрь митохондрий.Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление, переносчиком активированных жирных кислот через внутреннюю митохондриальную мембрану служит карнитин (g-триметиламино-b-оксибути-рат):

После прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепления ацилкарнитина при участии НS-КоА и митохондриальной карнитин-ацилтрансферазы:

Ацил-КоА в митохондрии подвергается процессу b-окисления.

Этот путь окисления связан с присоединением атома кислорода к углеродному атому жирной кислоты, находящемуся в b-положении:

При b-окислении происходит последовательное отщепление от карбоксильного конца углеродной цепи жирной кислоты двууглеродных фрагментов в форме ацетила-КоА и соответствующее укорачивание цепи жирной кислоты:

В матриксе митохондрии ацил-КоА распадается в результате повторяющейся последовательности четырех реакций (рис.8).

1) окисление с участием ацил-КоА-дегидрогеназы (ФАД-зависимой дегидрогеназы);

2) гидратация, катализируемой еноил-КоА-гидратазой;

3) второго окисления под действием 3-гидроксиацетил-КоА-дегидрогеназы (НАД-зависимой дегидрогеназы);

4) тиолиза с участием ацетил-КоА-ацилтрансферазы.

Совокупность этих четырех последовательностей реакций составляет один оборот b-окисления жирной кислоты (см. рис. 8).

Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацетил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь b-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), на последнем этапе b-окисления распадается на две молекулы ацетил-КоА.

При окислении жирной кислоты, содержащей n углеродных атомов, происходит n/2-1 цикл b-окисления (т.е. на один цикл меньше, чем n/2, так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n/2 молекул ацетил-КоА.

Читайте также:  L carnitine cybermass отзывы

Например при окислении пальмитиновой кислоты (С16) повторяется 16/2-1=7 циклов b-окисления и образуется 16/2=8 молекул ацетил-КоА.

Рисунок 8 – Схема b-окисления жирной кислоты

Баланс энергии.При каждом цикле b-окисления образуется одна молекула ФАДН2 (см. рис. 8; реакция 1) и одна молекула НАДН+Н + (реакция 3). Последняя в процессе окисления дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН2 – 2 молекулы АТФ и НАДН+Н + – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5*7=35 молекул АТФ. В процессе b-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле Кребса, дает 12 молекул АТФ, а 8 молекул дадут 12*8=96 молекул АТФ.

Таким образом, всего при полном b-окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на стадии активации жирной кислоты, общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты составит 131-1=130 молекул АТФ.

Однако, образовавшийся в результате b-окисления жирных кислот ацетил-КоА, может не только окисляться до СО2, Н2О, АТФ, вступая в цикл Кребса, но использоваться на синтез холестерина , а также углеводов в глиоксилатном цикле.

Глиоксилатный путь специфичен только для растений и бактерий, у животных организмов он отсутствует. Данный процесс синтеза углеводов из жиров подробно описан в методическом указании «Взаимосвязь процессов обмена углеводов, жиров и белков» (см. п. 2.1.1, с. 26).

168-169

Побочные пути деградации жирных кислот

Основной путь деградации жирных кислот протекает через β-окисление (см. с. 166). Наряду с этим имеются побочные метаболические пути, такие, как разрушение ненасыщенных жирных кислот (схема А ), разрушение жирных кислот с нечетным числом углеродных атомов (схема Б ), α- и ω-окисление жирных кислот, а также деградация жирных кислот в пероксисомах. Хотя эти побочные пути количественно менее важны, их нарушение может приводить к тяжелым заболеваниям (см. ниже).

Читайте также:  Smart bluetooth браслет

А. Деградация ненасыщенных жирных кислот

У ненасыщенных жирных кислот двойные связи в положении 9 или 12 обычно имеют цис -конфигурацию, как, например, в линолевой кислоте (18:2; 9,12). Деградация таких кислот, как и насыщенных жирных кислот, протекает путем β-окисления до С-9- цис -двойной связи. Поскольку в промежуточных продуктах (КоА-эфирах Δ 2,3 -не насыщенных кислот) двойная связь должна быть в транс -конфигурации, специфическая изомераза катализирует превращение 3,4- цис -изомера в 2,3 -транс -изомер [ 1 ] и деградация может быть продолжена путем β-окисления. В тех случаях, когда такое превращение невозможно, двойная связь восстанавливается с помощью НАДФН + Н + (NADPH + Н + ) [ 2 ]. Последующая деградация жирной кислоты происходит по обычному механизму β-окисления, сопровождающемуся перегруппировкой двойных связей.

Б. Деградация жирных кислот с нечетным числом атомов углерода

Эта группа жирных кислот окисляется по такому же механизму, что и обычные жирные кислоты с четным числом атомов углерода. После поступления в клетку они активируются с образованием ацил-КоА и потреблением АТФ, затем транспортируются в митохондрии с помощью карнитинового челнока, где разрушаются в результате β-окисления (см. с. 166). Остающийся пропионил-КоА карбоксилируется пропионил-КоА-карбоксилазой с образованием метилмалонил-КоА [ 3 ], который после изомеризации (не показано, см. с. 402) превращается в сукцинил-КоА [ 4 ].

В этих реакциях принимают участие различные коферменты: карбоксилирование [ 3 ] происходит с помощью биотина , а изомеризация мутазой [ 4 ] — с участием кофермента В 12 (5′-дезоксиаденозилкобаламина, см. с. 356).

Сукцинил-КоА является промежуточным метаболитом цитратного цикла и после превращения в оксалоацетат включается в глюконеогенез . Из конечного продукта деградации жирных кислот с нечетным числом атомов углерода — пропионил-КоА — синтезируется глюкоза. Напротив, образующиеся при β-окислении молекулы ацетил-КоА не могут использоваться для глюконеогенеза, так как оба углеродных атома ацетильного остатка на пути к оксалоацетату превращаются в СО 2 .

Читайте также:  Бег на далекие дистанции

Дополнительно к показанному в верхней части схемы пути деградации жирных кислот имеются второстепенные пути, предназначенные для окисления некоторых необычных жирных кислот, присутствующих Ε пище.

α-Окислением разрушаются метилразветвленные жирные кислоты. Процесс начинается с гидроксилирования и далее осуществляется путем последовательного отщепления С 1 -остатков, не требует участия кофермента А и не сопровождается синтезом АТФ.

ω-Окисление начинается с гидроксилирования ω-углеродного атома жирной кислоты монооксигеназой (см. с. 310) и в результате окисления приводит к образованию жирных кислот с двумя карбоксильными группами, которые разрушаются β-окислением с обеих сторон до С 8 — или С 6 -дикарбоновых кислот и, наконец, выводятся с мочой.

Деградация жирных кислот с очень длинной целью атомов углерода. Альтернативная форма β-окисления встречается в пероксисомах печени, специализирующихся на разрушении длинноцепочечных жирных кислот [n > 20), в результате чего образуются ацетил-КоА и Н 2 О 2 ; при этом АТФ не синтезируется.

Нарушения обходных путей деградации жирных кислот приводят к известным клиническим последствиям: при синдроме Реф сума метилразветвленная фитиновая кислота (из растительной пищи) не может разрушаться путем α-окисления, при синдроме Целльвегера нарушена деградация длинноцепочечных жирных кислот из-за дефекта пероксисом.

Бета-окисление является основным путем катаболизма жирных кислот . Однако недавно было обнаружено, что в тканях мозга происходит альфа-окисление жирных кислот , т.е. последовательное отщепление одноуглеродных фрагментов от карбоксильного конца молекулы. В этом процессе участвуют интермедиаты, содержащие CoA ; он не сопровождается образованием богатых энергией фосфатных связей. Омега-окисление жирных кислот в норме весьма незначительно. Этот тип окисления, катализируемый гидроксилаза ми при участии цитохрома P-450 (см. с. 123), протекает в эндоплазматическом ретикулуме . -CH3-Группа превращается в -CH2OH-группу, которая затем окисляется до -COOH; в результате образуется дикарбоновая кислота . Последняя расщепляется путем бета-окисления обычно до адипиновой (C6) и субериновой (C8) кислот , которые затем удаляются с мочой .

Ссылка на основную публикацию
Акустическая травма уха симптомы
Акустическая травма (акутравма) – поражение внутреннего уха, вызванное одномоментным или постоянным воздействием чрезмерно сильного звука или шума. Основные симптомы острого...
Wwe актеры 2017
Лити Джозеф «Джо» Аноа’й (Роман Рейнс) родился 25 мая 1985 года. Роман Рейнс - американский профессиональный борец и бывший профессиональный...
Www bayerhealthcare ru
Знаменитая немецкая фармацевтическая компания «Bayer» уже полтора века обеспечивает потребителей важнейшими медикаментами из разных отраслей медицины. Специалисты корпорации являются изобретателями...
Алан пиз как бросить курить
Меня зовут Андрей Колесников, я являюсь партнером Центра Аллена Карра в России. На период самоизоляции мы предлагаем пройти видеокурс со...
Adblock detector